Exercises for Differential calculus in several variables. Bachelor Degree Biomedical Engineering Universidad Carlos III de Madrid. Departamento de Matemáticas

Chapter 2.3 Global and Constrained Extrema

Problem 1. Find the extrema of the following functions on the specified domains:

- i) $f(x,y) = x^3 y^3$ on \mathbb{R}^2 ;
- ii) $f(x,y) = x^4y^4$ on \mathbb{R}^2 ;
- iii) $f(x,y) = \frac{x-y}{1+x^2+y^2}$ on \mathbb{R}^2 ;
- iv) f(x,y) = |x| + |y| on $A = \{(x,y) : |x| \le 1, |y| \le 1\}.$

Solution: *i*) (x, 0) and (0, y) are saddle points (*f* has no minima and no maxima); *ii*) (x, 0) and (0, y) are global minima with value 0 (*f* has no maxima); *iii*) *f* has at $(1/\sqrt{2}, -1/\sqrt{2})$ a local maximum with value $f(1/\sqrt{2}, -1/\sqrt{2}) = 1/\sqrt{2}$, and at $(-1/\sqrt{2}, 1/\sqrt{2})$ a local minimum with value $f(-1/\sqrt{2}, 1/\sqrt{2}) = -1/\sqrt{2}$; *iv*) (0, 0) is a global minimum and $(\pm 1, \pm 1)$ are global maxima.

Problem 2. Solve the following optimization problems constrained to the sphere $x^2 + y^2 + z^2 = 1$:

- i) Maximize the function f(x, y, z) = xyz;
- ii) Minimize the function f(x, y, z) = x + 2y + 4z.

Solution:

- i) Maximum at $\frac{1}{\sqrt{3}}(1,1,1)$, $\frac{1}{\sqrt{3}}(-1,-1,1)$, $\frac{1}{\sqrt{3}}(-1,1,-1)$, $\frac{1}{\sqrt{3}}(1,-1,-1)$.
- ii) Minimum at $-\frac{1}{\sqrt{21}}(1,2,4)$.

Problem 3. i) Compute the minimum of the function $f(x, y) = x^2 + y^2$ on the set $A = \{xy = 1\}$.

ii) Compute the minimum of the function f(x, y) = xy on the set $A = \{x^2 + 4y^2 = 4\}$.

Solution:

- i) Minima at the points (1, 1) and (-1, -1);
- ii) Maxima at the points $(\sqrt{2}, 1/\sqrt{2})$ and $(-\sqrt{2}, -1/\sqrt{2})$; minima at the points $(\sqrt{2}, -1/\sqrt{2})$ and $(-\sqrt{2}, 1/\sqrt{2})$.

Problem 4. Compute the extrema of the following functions constrained to the given subsets:

i) f(x,y) = xy constrained to 2x + 3y - 5 = 0;

- ii) $u(x,y) = \frac{\log x}{x} + \frac{\log y}{y}$ constrained to x + y = 1, x, y > 0.
- iii) $h(x, y, z) = x^2 y^4 z^6$ constrained to x + y + z = 1, x, y, z > 0;

Solution:

- i) maximum at (5/4, 5/6), there is no minimum;
- ii) maximum at (1/2, 1/2), there is no minimum;
- iii) maximum at (1/6, 1/3, 1/2), there are no minima.

Problem 5. Compute the absolute maxima and minima of function

 $f(x,y) = x^2 + y^2 + 6x - 8y + 25$

on the set $D = \{x^2 + y^2 \le 16\}.$

Solution: Minimum at (-12/5, 16/5); maximum at (12/5, -16/5).

Problem 6. Compute the extrema of the following functions on the given subsets:

- i) f(x, y, z) = x + y + z on $S = \{2x^2 + 3y^2 + 6z^2 = 1\};$
- ii) $f(x,y) = x^2 + y^2 2x 2y + 2$ on $T = \{ y/2 \le x \le 3 \sqrt{2y}, 0 \le y \le 2 \};$
- iii) $f(x, y, z) = x^2 + y^2 + z^2$ on $U = \{ (x, y, z) \in \mathbb{R}^3 / z \ge x^2 + y^2 2 \}.$

Solution:

- i) (1/2, 1/3, 1/6) is a maximum and (-1/2, -1/3, -1/6) is a minimum;
- ii) (3,0) is a maximum and (1,1) is a minimum;
- iii) The set of points

$$\begin{cases} x^2 + y^2 = \frac{3}{2}, \\ z = -\frac{1}{2}, \end{cases}$$

whose value is $f(x_0, y_0, z_0) = \frac{7}{4}$ will be a set of maximum points and at (0, 0, 0) there will be a minimum.

Problem 7. Find the maximal and minimal values of the function f(x, y, z) = x + 2y + 3z taking into account the two restrictions $x^2 + y^2 = 2$, x + z = 1.

Solution: Maximal value M = 7, minimal value m = -1.

Problem 8. What is the distance of the point (2, 2, 2) to the sphere $x^2 + y^2 + z^2 = 1$. Solution: $2\sqrt{3} - 1$.

Exercises Ch. 2 Calculus II. Bachelor Degree Biomedical Engineering

Problem 9. Compute the distance of the point (4, 4, 10) to the sphere $(x - 1)^2 + y^2 + (z + 2)^2 = 25$ in two ways:

- i) use geometrical arguments;
- ii) use Lagrange multipliers.

Solution: d = 8 with d as the distance.

Problem 10. Express a positive number A as a product of four positive factors, ie. A = abcd, with minimal sum.

Solution: $a = A^{1/4}$.

Problem 11. A company produces three different products in quantities Q_1, Q_2, Q_3 and generates a profit given by the expression

$$P(Q_1, Q_2, Q_3) = 2Q_1 + 8Q_2 + 24Q_3.$$

Find the values of Q_1, Q_2, Q_3 that maximize the profit if the production is constrained to

$$Q_1^2 + 2Q_2^2 + 4Q_3^2 = 4.5 \times 10^9.$$

Solution: $Q_1 = 10^4$, $Q_2 = 2Q_1$, $Q_3 = 3Q_1$.

Problem 12. The production of a company is described in terms of the function

j

$$Q = f(K, L) = K^{\alpha} L^{1-\alpha},$$

where $0 < \alpha < 1$, K is the amount of capital and L is the amount of man-power used. The unit price of the capital is p and the price of the man-power is q. Compute the proportion between the capital and man-power needed to maximize the production using a budget B.

Solution: $\frac{K}{L} = \frac{\alpha q}{(1-\alpha)p}$.