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Chapter 2.3 Global and Constrained Extrema

Problem 1. Find the extrema of the following functions on the specified domains:

i) f(x, y) = x3y3 on R2;

ii) f(x, y) = x4y4 on R2;

iii) f(x, y) =
x− y

1 + x2 + y2
on R2;

iv) f(x, y) = |x|+ |y| on A = {(x, y) : |x| ≤ 1, |y| ≤ 1}.

Solution: i) (x, 0) and (0, y) are saddle points (f has no minima and no maxima); ii) (x, 0) and (0, y)
are global minima with value 0 (f has no maxima); iii) f has at (1/

√
2,−1/

√
2) a local maximum with

value f(1/
√
2,−1/

√
2) = 1/

√
2, and at (−1/

√
2, 1/
√
2) a local minimum with value f(−1/

√
2, 1/
√
2) =

−1/
√
2; iv) (0, 0) is a global minimum and (±1,±1) are global maxima.

Problem 2. Solve the following optimization problems constrained to the sphere x2 + y2 + z2 = 1:

i) Maximize the function f(x, y, z) = xyz;

ii) Minimize the function f(x, y, z) = x+ 2y + 4z.

Solution:

i) Maximum at 1√
3
(1, 1, 1), 1√

3
(−1,−1, 1), 1√

3
(−1, 1,−1), 1√

3
(1,−1,−1).

ii) Minimum at − 1√
21
(1, 2, 4).

Problem 3. i) Compute the minimum of the function f(x, y) = x2 + y2 on the set A = {xy = 1}.

ii) Compute the minimum of the function f(x, y) = xy on the set A = {x2 + 4y2 = 4}.

Solution:

i) Minima at the points (1, 1) and (−1,−1);

ii) Maxima at the points (
√
2, 1/
√
2 ) and (−

√
2,−1/

√
2 ); minima at the points (

√
2,−1/

√
2 ) and

(−
√
2, 1/
√
2 ).

Problem 4. Compute the extrema of the following functions constrained to the given subsets:

i) f(x, y) = xy constrained to 2x+ 3y − 5 = 0;
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ii) u(x, y) =
log x

x
+

log y

y
constrained to x+ y = 1 , x, y > 0.

iii) h(x, y, z) = x2y4z6 constrained to x+ y + z = 1, x, y, z > 0;

Solution:

i) maximum at (5/4, 5/6), there is no minimum;

ii) maximum at (1/2, 1/2), there is no minimum;

iii) maximum at (1/6, 1/3, 1/2), there are no minima.

Problem 5. Compute the absolute maxima and minima of function

f(x, y) = x2 + y2 + 6x− 8y + 25

on the set D = {x2 + y2 ≤ 16}.

Solution: Minimum at (−12/5, 16/5); maximum at (12/5,−16/5).

Problem 6. Compute the extrema of the following functions on the given subsets:

i) f(x, y, z) = x+ y + z on S = { 2x2 + 3y2 + 6z2 = 1 };

ii) f(x, y) = x2 + y2 − 2x− 2y + 2 on T = { y/2 ≤ x ≤ 3−
√
2y, 0 ≤ y ≤ 2 };

iii) f(x, y, z) = x2 + y2 + z2 on U = { (x, y, z) ∈ R3 / z ≥ x2 + y2 − 2 }.

Solution:

i) (1/2, 1/3, 1/6) is a maximum and (−1/2,−1/3,−1/6) is a minimum;

ii) (3, 0) is a maximum and (1, 1) is a minimum;

iii) The set of points {
x2 + y2 = 3

2
,

z = −1
2
,

whose value is f(x0, y0, z0) = 7
4

will be a set of maximum points and at (0, 0, 0) there will be a
minimum.

Problem 7. Find the maximal and minimal values of the function f(x, y, z) = x + 2y + 3z taking into
account the two restrictions x2 + y2 = 2, x+ z = 1.

Solution: Maximal value M = 7, minimal value m = −1.

Problem 8. What is the distance of the point (2, 2, 2) to the sphere x2 + y2 + z2 = 1.

Solution: 2
√
3− 1.
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Problem 9. Compute the distance of the point (4, 4, 10) to the sphere (x− 1)2 + y2 + (z+2)2 = 25 in two
ways:

i) use geometrical arguments;

ii) use Lagrange multipliers.

Solution: d = 8 with d as the distance.

Problem 10. Express a positive number A as a product of four positive factors, ie. A = abcd, with minimal
sum.

Solution: a = A1/4.

Problem 11. A company produces three different products in quantities Q1, Q2, Q3 and generates a profit
given by the expression

P (Q1, Q2, Q3) = 2Q1 + 8Q2 + 24Q3.

Find the values of Q1, Q2, Q3 that maximize the profit if the production is constrained to

Q2
1 + 2Q2

2 + 4Q2
3 = 4.5× 109.

Solution: Q1 = 104, Q2 = 2Q1, Q3 = 3Q1.

Problem 12. The production of a company is described in terms of the function

Q = f(K,L) = KαL1−α,

where 0 < α < 1, K is the amount of capital and L is the amount of man-power used. The unit price
of the capital is p and the price of the man-power is q. Compute the proportion between the capital and
man-power needed to maximize the production using a budget B.

Solution:
K

L
=

αq

(1− α)p
.
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